Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis.
نویسندگان
چکیده
Plant invasion potentially alters ecosystem carbon (C) and nitrogen (N) cycles. However, the overall direction and magnitude of such alterations are poorly quantified. Here, 94 experimental studies were synthesized, using a meta-analysis approach, to quantify the changes of 20 variables associated with C and N cycles, including their pools, fluxes, and other related parameters in response to plant invasion. Pool variables showed significant changes in invaded ecosystems relative to native ecosystems, ranging from a 5% increase in root carbon stock to a 133% increase in shoot C stock. Flux variables, such as above-ground net primary production and litter decomposition, increased by 50-120% in invaded ecosystems, compared with native ones. Plant N concentration, soil NH+4 and NO-3 concentrations were 40, 30 and 17% higher in invaded than in native ecosystems, respectively. Increases in plant production and soil N availability indicate that there was positive feedback between plant invasion and C and N cycles in invaded ecosystems. Invasions by woody and N-fixing plants tended to have greater impacts on C and N cycles than those by herbaceous and nonN-fixing plants, respectively. The responses to plant invasion are not different among forests, grasslands, and wetlands. All of these changes suggest that plant invasion profoundly influences ecosystem processes.
منابع مشابه
Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis.
Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species' traits may provide the necessary insights. We conducted a global me...
متن کاملElevated Carbon Dioxide Stimulates Net Accumulations of Carbon and Nitrogen in Terrestrial Ecosystems: A Meta-Analysis
The capability of terrestrial ecosystems to sequester carbon (C) plays a critical role in regulating future climatic change yet depends on nitrogen (N) availability. To predict long-term ecosystem C storage, it is essential to examine whether soil N becomes progressively limiting as C and N are sequestered in long-lived plant biomass and soil organic matter. A critical parameter to indicate the...
متن کاملGrass invasion effects on forest soil carbon depend on landscape-level land use patterns.
Plant invasions can alter the quality and quantity of detrital and root-derived inputs entering a system, thereby influencing the activities of microbial decomposers and affecting the soil carbon cycle. The effect of these inputs on soil carbon storage is often conflicting, suggesting strong context dependency in the plant-decomposer relationship. Whether there is a generalizable pattern that e...
متن کاملGlobal sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model
Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The analysis was carried out for...
متن کاملStimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.
Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 177 3 شماره
صفحات -
تاریخ انتشار 2008